Effects of isoflurane and enflurane on GABAA and glycine receptors contribute equally to depressant actions on spinal ventral horn neurones in rats.
نویسندگان
چکیده
BACKGROUND Volatile anaesthetics are widely used agents in clinical anaesthesia, although their mechanism of action is poorly understood. In particular, the dominant molecular mechanisms by which volatile anaesthetics depress spinal neurones and thereby mediate spinal effects such as immobility have recently become a matter of dispute. As GABAA and glycine receptors are potential candidates we investigated the impact of both receptor systems in mediating the depressant effects of isoflurane and enflurane on spinal neurones in rats. METHODS The effects of isoflurane and enflurane on spontaneous action potential firing were investigated by extracellular voltage recordings from ventral horn interneurones in cultured spinal cord tissue slices obtained from embryonic rats (E 14-15). RESULTS Isoflurane and enflurane reduced spontaneous action potential firing. Concentrations causing half-maximal effects (isoflurane: 0.17 mM; enflurane: 0.50 mM) were less than EC50-immobility (isoflurane: 0.32 mM; enflurane: 0.62 mM). Effects of isoflurane were mediated by 39% by glycine receptors and 36% by GABAA receptors. The effects of enflurane were mediated 26% by GABAA receptors and 29% by glycine receptors. CONCLUSION These results demonstrate that the effects of isoflurane and enflurane on GABAA and glycine receptors contribute almost equally to their depressant actions on spinal ventral horn neurones in rats. The fraction of inhibition mediated by both receptor systems differs between specific volatile anaesthetics. Our data argue against the theory that a dominant molecular mechanism accounts for spinal effects of volatile anaesthetics.
منابع مشابه
Inhalation anaesthetics exhibit pathway-specific and differential actions on hippocampal synaptic responses in vitro.
The effects of halothane, isoflurane and enflurane were compared on three CNS excitatory synaptic pathways in vitro, to determine whether selective actions described in vivo result from differential effects on anatomically distinct cortical pathways and neurone populations. Halothane (0.25-1.25 vol%) depressed postsynaptic excitability of CA1 pyramidal neurones in response to activation of stra...
متن کاملPropofol differentially inhibits the release of glutamate, γ-aminobutyric acid and glycine in the spinal dorsal horn of rats
Objective(s): Propofol (2, 6-diisopropylphenol) is an intravenous anesthetic that is commonly used for the general anesthesia. It is well known that the spinal cord is one of the working targets of general anesthesia including propofol. However, there is a lack of investigation of the effects of propofol on spinal dorsal horn which is important for the sensory transmission of nociceptive signal...
متن کاملNeurons in the ventral spinal cord are more depressed by isoflurane, halothane, and propofol than are neurons in the dorsal spinal cord.
BACKGROUND Volatile anesthetics act primarily in the spinal cord to produce immobility but their exact site of action is unclear. Between 0.8 and 1.2 minimum alveolar anesthetic concentration (MAC), isoflurane does not depress neurons in the dorsal horn, suggesting that it acts at a more ventral site within the spinal cord such as in premotor interneurons and motoneurons. We hypothesized that i...
متن کاملPropofol and other intravenous anesthetics have sites of action on the gamma-aminobutyric acid type A receptor distinct from that for isoflurane.
Both volatile and intravenous general anesthetics allosterically enhance gamma-aminobutyric acid (GABA)-evoked chloride currents at the GABA type A (GABAA) receptor. Recent work has revealed that two specific amino acid residues within transmembrane domain (TM)2 and TM3 are necessary for positive modulation of GABAA and glycine receptors by the volatile anesthetic enflurane. We now report that ...
متن کاملNeuroprotective Effects of Aqueous Extract of Achillea Wilhelmsii on Motor Neuron Destruction of Spinal Cord Ventral Horn after Sciatic Nerve Compression in Male Adult Rats
Background & Aims: Peripheral nerve injuries affect both sensory and motor function, resulting in retrograde reaction to neuronal cell bodies in the ventral horn of spinal cord ventral and their destruction. Achillea wilhelmsii is one of the popular medicinal herbs which grow in dry and semitropical areas worldwide. There are several reports indicating the anti-inflammatory, antispasmodic, anti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- British journal of anaesthesia
دوره 97 5 شماره
صفحات -
تاریخ انتشار 2006